Business and Security Analytics
Master of Science

Modulhandbuch

Version 1.0

Stand: 4. Dezember 2018
Inhalt

Inhalt... 3

Semester 1.. 5
 51100 Business Intelligence .. 6
 52200 Data and Web Mining .. 9
 52300 Large-Scale Data Analysis and Parallelization ... 12
 52400 Semantic Web ... 15
 52500 Strategisches IT-Management .. 19
 XXX Open Source Intelligence (OSINT) .. 22
 XXX Incident Response und Malware Defence ... 25

Semester 2... 28
 52100 Business Process Management and Data Compliance ... 29
 51200 Advanced Statistics .. 32
 51300 Distributed Enterprise Applications ... 34
 51500 Innovation and Transfer Competence ... 38
 XXX Advanced Network and Internet Security (ANIS) .. 42
 XXX Security Analytics .. 45
 XXX Financial Risks & Financial Management .. 47

Semester 3... 50
 60100 Master-Thesis ... 51
 60200 Mündliche Masterprüfung .. 53

Zuordnung der Module zu Fächergruppen (Säulen)... 55
 Informatik ... 55
 Wirtschaftsinformatik .. 55
 Fächerübergreifende Qualifikationen ... 55
Semester 1
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>51100 Business Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>51100</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung Business Intelligence</td>
</tr>
<tr>
<td></td>
<td>Project Business Intelligence</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Bernd Stauß</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Bernd Stauß, NN</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch oder English, wenn von den Modulteilnehmern gewünscht (deutsches und englisches Literaturstudium erforderlich)</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Projekt: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art: Präsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Projekt: 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h 120 h</td>
</tr>
<tr>
<td></td>
<td>(6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
Die Studierenden besitzen grundlegende Kenntnisse, Fertigkeiten und Erfahrungen in
- Datenbanken und DWH
- Advanced Statistics
- Mathematische Grundlagen respektive Lineare Algebra
- GUI Entwicklung
- Mobile Computing und Cloud

Modulziele / Angestrebte Lernergebnisse
Kenntnisse
Die Studierenden
- Kennen die Spezifika des Reporting-Wesen und die Reporting Anforderungen von unterschiedlichen Management-Strukturen in Unternehmen
- Kennen die wichtigsten Reporting-Techniken, Tools und Dashboards
- Kennen den OLAP-Prozess sowie die wichtigsten OLAP Systeme und Techniken
- kennen die grundlegenden ETL-Konzepte, Anwendungen und Tools

Fertigkeiten
Die Studierenden können
Inhalt

- Die state-of-the-art Business Intelligence Tools anwenden darunter die Tools für
 - die Reporting und Datenvisualisierung
 - die Durchführung der OLAP-Operationen wie Slicing und Dicing mit der anschließenden Ausgabe der erhaltenen Daten als Reports
 - Die ETL Prozesse

Kompetenzen
Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

Die Studierenden
- verfügen über das Wissen und Techniken, um die Informationen erforderlichen für die Unterstützung der Entscheidungsfindung durch das Unternehmens-management sowie für die Erarbeitung von strategischen Vorteilen im Wettbewerb zu sammeln und zu verarbeiten.
- verfügen über die analytischen Fähigkeiten, die ihnen ermöglichen, Markt- und Industrieanalyse, Business Performance-Analysis, Benchmarking- und Predictive Analysis sowie Management-Berichte aus der Perspektive unterschiedlicher Unternehmensfunktionen wie Controlling, Marketing, Produktion etc., durchzuführen
- sind in der Lage wissenschaftliche Beiträge im Themenbereich Business Intelligence eigenständig zu lesen und qualitative Vergleiche der gelesenen Beiträge systematisch zu präsentieren

Vorlesung

- Entscheidungsorientierte Informationssysteme
- OLAP, DWH, ETL
- Data Cube Operations
- Metadata
- Business Content
- Data Sources, Data Access und Extraction
- Staging Engine und InfoCubes
- Reporting, Visualization, Interaktion
- Mobile Lösungen

Projekt

- Die Studierenden arbeiten am Beispiel eines virtuellen Unternehmens, das Sie selbst modellieren.
- Sie identifizieren die relevanten Datenquellen, erfassen die Daten, führen Datenanalysen aus, treffen auf dieser Grundlage Entscheidungen und generieren Vorschläge für Abänderungen der Geschäftsprozesse des Unternehmens bzw. der betrieblichen Informationssysteme.

Studien-/Prüfungsleistungen
- Klausur 90 min., benotet
- Praktische Arbeit, unbenotet

Medienformen
- Multimediale Vorlesungspräsentation
- Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken
- Vorträge über multimediale Vorlesungspräsentationen
- Nutzung von diversen Applikationen
- Projekt unter Nutzung von diversen Medien

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Inhalt

- kennen die wichtigsten Methoden der Datentransformation
- kennen die wichtigsten Web-Mining Methoden wie Text Indexing, Ranking, Crawling.

Fertigkeiten

Die Studierenden können

- alle oben genannten Data und Web-Mining Methoden in der Praxis verwenden
- mit mindestens einem Datamining Tool sicher umgehen
- Unternehmensdaten extrahieren, konsolidieren und für die Auswertung in geeigneten Kennzahlen-Systemen bzw. für Recherche / Mustererkennung aufbereiten
- die Komplexität, die Machbarkeit und den Innovationsgrad von angestrebten Problemlösungen erkennen bzw. miteinander vergleichen

Kompetenzen

Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

Die Studierenden

- Sind in der Lage für eine Unternehmensbezogene Fragestellung relevanten Daten zu identifizieren, Datamining Techniken auszuwählen, verwenden und die Ergebnisse ein einer für die Beantwortung der Frage passenden Form darzustellen
- sind in der Lage, die für eine Problemstellung relevanten Web-Ressourcen-Domäne zu identifizieren, die Web-Mining-Techniken für die ausgewählten Ressourcen anzuwenden und die Ergebnisse in einer Form darzustellen, die zur Entscheidungsfindung bzw. zur Lösung des Problems einen Beitrag leistet.
- sind in der Lage wissenschaftliche Beiträge im Themenbereich Data- und Web-Mining eigenständig zu lesen und qualitative Vergleiche der gelesenen Beiträge systematisch zu präsentieren

Vorlesung

- Clustering & Evaluation der Ergebnisse
- Klassifikation, Regression & Evaluation Evaluation der Ergebnisse
- Datentransformation
- Parameter-Selektion-Methoden
- Text- und Web-Page Preprocessing
- Text Indexing
- Web Search
- Social Network Analysis
- Web Crawling

Praktikum
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
</tr>
</tbody>
</table>

- selbständige Formulierung von komplexen Aufgabenstellungen ausgehend von Unternehmens, und die Aufgabenlösung mithilfe von eigenständig erarbeiteten analytischen Prozessen
- Nutzung eines Datamining Tool, wie RapidMiner zur Implementierung von Data- und Web-Mining Prozessen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur 90 min., benotet</td>
</tr>
<tr>
<td>Praktische Arbeit, unbenotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimediale Vorlesungspräsentation</td>
</tr>
<tr>
<td>Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken</td>
</tr>
<tr>
<td>Vorträge über multimediale Vorlesungspräsentationen</td>
</tr>
<tr>
<td>Nutzung von diversen Applikationen</td>
</tr>
<tr>
<td>Projekt unter Nutzung von diversen Medien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen | Vorlesung Large-Scale Data Analysis and Parallelization
 Praktikum Large-Scale Data Analysis and Parallelization |
| Studiensemester | 1 |
| Modulverantwortliche(r) | Prof. Dr. Thomas Eppler |
| Dozent(in) | Prof. Dr. Thomas Eppler |
| Sprache | Deutsch oder English, wenn von den Modulteilnehmern gewünscht (deutsches und englisches Literaturstudium erforderlich) |
| Zuordnung zum Curriculum | Studiengang: Business and Security Analytics, M.Sc.
 Wahl/Pflicht: Pflichtmodul
 Semester: 1 |
| Lehrform / SWS | Vorlesung: 2 SWS
 Praktikum: 2 SWS |
| Arbeitsaufwand | **Veranstaltung/Art**
 Präsenz
 Eigenstudium
 Vorlesung: 30 h 60 h
 Praktikum: 30 h 60 h
 Summe: 180h
 (6 * 30 Std./ECTS): 60 h 120 h |
| Kreditpunkte (ECTS) | 6 |
| Voraussetzungen nach Prüfungsordnung | Keine |
| Empfohlene Voraussetzungen | Modul Datenbanken in einem Bachelorstudiengang mit Kenntnissen zu
 - relationalen Datenbanken
 - SQL
 Grundkenntnisse des Betriebssystems Linux |
| Modulziele / Angestrebte Lernergebnisse | **Kenntnisse**
 Die Studierenden
 - kennen Systeme und Techniken für die parallele Datenverarbeitung
 - kennen die Aufgabenstellungen aus dem Themengebiet Large-Scale Data Analysis, z.B. Volltext- suche oder Graphen-Knotensuche, deren Lösungen mithilfe von Parallelisierungstechniken umgesetzt werden. |
Fertigkeiten
Die Studierenden können in-memory Datenbanken, Datenbanktechnologien Map Reduce und YARN sowie verteilte Datenbankmanagementsysteme anwenden, darunter Hadoop, MySQL-Cluster und Microsoft SQL Server in-memory.

Kompetenzen
Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

Die Studierenden

- sind in der Lage die Problem- und Aufgabenstellungen mit Bezug auf das Themengebiet Large Scale Data Analytics bzw. Big Data zu erkennen, diese zu beschreiben, basierend auf eigenem wissen und durch die gezielte Recherche, Lösungsansätze zu beschreiben und diese allein oder im Team umzusetzen.

- sind in der Lage wissenschaftliche Beiträge im Themenbereich Large Scale Data Analytics bzw. Big Data eigenständig zu lesen und qualitative Vergleiche der gelesenen Beiträge systematisch zu präsentieren.

Inhalt

Vorlesung:

- Überblick zu No-SQL-Datenbanken
- Überblick zu Graphendatenbanken
- Parallelisierungsstrategien
 - Threads
 - Vektorparallelisierung
 - Verteilung auf Coprozessoren
 - Verteilung auf GPUs
- Clustering und die Map Reduce Funktion
- Verteilte Datenbanken
 - Vertikale/horizontale Fragmentierung
 - Fragmentierungstransparenz
 - Transaktionskontrolle
- In Memory Datenbanken am Beispiel Microsoft SQL Server
- Frameworks für Skalierung und Parallelisierung der Datenzugriffe am Beispiel von Adobe Hadoop
 - Hadoop File System
 - Map Reduce
 - YARN
Hochschule Albstadt-Sigmaringen
Fakultät Informatik
Business and Security Analytics

<table>
<thead>
<tr>
<th>o Hive</th>
<th>o Partitionierung</th>
<th>o Graph Builder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Datanbank-Clustering am Beispiel von MySQL Clusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Cluster einrichten</td>
<td>o Partitionstypen</td>
<td>o Verwaltung von Partitionen</td>
</tr>
</tbody>
</table>

Praktikum:
Arbeiten mit dem DBMS Hadoop
- Partitionierung
- SQL-Abfragen
- Load von Hadoop mit unstrukturierten Daten wie Texten, Bildern, etc.
- Map/Reduce-/YARN- Framework

Arbeiten mit dem MySQL Cluster
- Partitionierung
- SQL Abfragen

Parallelisierung mit Intel Studio XE
- Vektorparallelisierung
- Threads
- Programmierung mit mehreren
 - GPUs
 - Coprozessoren

| Studien-/Prüfungsleistungen/Prüfungsformen | Klausur 90 Min., benotet
Praktische Arbeiten, unbenotet |
|---|---|

| Medienformen | Multimediale Vorlesungspräsentation
Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken |

| Literatur | Ramon Wartala: **Hadoop: Zuverlässige, verteilte und skalierbare Big-Data-Anwendungen**, Open Source Press
Edward Capriolo, Dean Wampler, Jason Rutherglens: **Programming Hive**, O'Reilly
Tom White. **Hadoop. The definitive Guide**, O’ Reilly
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>52400 Semantic Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>52400</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung Semantic Web</td>
</tr>
<tr>
<td></td>
<td>Projekt Semantic Web</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. German Nemirovski</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. German Nemirovski</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch (deutsches und englisches Literaturstudium erforderlich)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 1</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Projekt: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/ArtPräsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Projekt: 30 h 80 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180h 60h 120h</td>
</tr>
<tr>
<td></td>
<td>(6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Studierenden besitzen grundlegende Kenntnisse, Fertigkeiten und Erfahrungen in</td>
</tr>
<tr>
<td></td>
<td>- Wissenschaftlichem Arbeiten (nachgewiesen durch Bachelor-Abschluss)</td>
</tr>
<tr>
<td></td>
<td>- Komplexitätstheorie</td>
</tr>
<tr>
<td></td>
<td>- Prädikatenlogik</td>
</tr>
<tr>
<td></td>
<td>- Entwicklung von Web-Anwendungen / Serverseitiges Programmieren</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>- verstehen den „Ontology-Sandwich“ und kennen die Rollen von seinen Komponenten, u.a. URI, OWL, RDF(S) im Aufbau der Ontologien.</td>
</tr>
</tbody>
</table>
• kennen einzelnen RDF(S) und OWL-Elemente
• verstehen den Aufbau von Ontologien und die Rolle von Beschreibenden Logiken
• kennen die Typischen Reasoning-Aufgaben, wie Conjunctive Querying oder Inference
• kennen wichtigsten Metadaten-Formate für die Web-Ressourcen

Fertigkeiten
Die Studierenden
• können mithilfe von einem Ontologie-Editor, z.B. Protégé, Ontologien codieren
• können SPARQL-Queries formulieren, diese über ein SPARQL-Endpoint absetzen und die Ergebnisse interpretieren
• können DL-Reasoner einsetzen und die Ergebnisse von Reasoning interpretieren
• können DL-Formalismen lesen und verstehen
• kennen die wichtigsten Linked Open Data sources, wie die DBpedia, Linked GeoData, GEMET oder Product DB und sind in der Lage die GUI-Schnittstellen der entsprechenden SPARQL-Endpoints zu bedienen

Kompetenzen
Die Studierenden
• sind in der Lage Konzeptionelle Repräsentation einer Wissensdomäne zu entwickeln und dabei seine Vernetzung mit anderen Wissensdomänen berücksichtigen
• sind dazu befähigt, Ontologien nach Maßgaben eines ausgewählten Formalismus (einer DL-Sprache) zu entwickeln unter sich dabei die Konsequenzen für die Ausführung der Reasoning-Aufgaben im Kontext eines Einsatzes von Informationssystemen vorstellen.
• sind in der Lage wissenschaftliche Beiträge im Themenbereich Semantic Web eigenständig zu lesen und qualitative Vergleiche der gelesenen Beiträge systematisch zu präsentieren

Vorlesung
• Web für die Maschinen in Überblick,
 ○ Web Mining
 ○ Reasoning
• Web Ressourcen und Metadaten, Modelle und Formate
• RDF & RDFS
• Von RDF(S) zu OWL (vertieft)
 ○ Ontologien
 ○ Aufteilung in TBox und ABox
 ○ Knowledge bases
• SPARQL

Inhalt
<table>
<thead>
<tr>
<th>Projektiert</th>
<th>Studien-/Prüfungsleistungen</th>
<th>Medienformen</th>
<th>Literatur</th>
</tr>
</thead>
</table>
| • Grundlagen der Beschreibenden Logiken (vertieft)
 o FOL & Prädikatenlogik
 o DL Beispiele: ALL, EL, EL-Lite, etc.
 o Widerspruch zwischen der Ausdruckstärke und der Performance des Reasoning
• Best Practices der Ontologie-Design (vertieft)
 o Ontogie-Editoren, e.g. Protégé
 o Modularisierung
 o Upper Level Ontologien
 o Versionierung von Ontologien
• Reasoning, Reasoning Aufgaben
 o Inferring
 o Conjunctive Querying
 o Consistency and Coherency Check
 o Reasoner-Beispiele und ihre möglichen Settings
• Federated Ontologies
 o Linked Open Data
 o Federation Engine, z.B. Fedex |
| Klausur 90 min., benotet
Praktische Arbeit, unbenotet |
| • Multimediale Vorlesungspräsentation
• Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken
• Vorträge über multimediale Vorlesungspräsentationen
• Nutzung von diversen Applikationen
• Projekt unter Nutzung von diversen Medien |
Ronald J. Brachman, Hector J. Levesque, *Knowledge Representation and Reasoning (Morgan Kaufmann Series in Artificial Intelligence)*, Morgan Kaufmann, 2004

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>52500 Strategisches IT-Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>52500</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung Strategisches IT-Management</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Nils Herda</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Nils Herda</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch (deutsches und englisches Literaturstudium erforderlich)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td>Wahl/Pflicht:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Semester:</td>
<td>1</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Fallstudie: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art Präsenz Eigenstudium</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>30 h 60 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>30 h 60 h</td>
</tr>
<tr>
<td>Sommer: 180h</td>
<td>60 h 120 h</td>
</tr>
<tr>
<td>Summe: 180h</td>
<td>60 h 120 h</td>
</tr>
<tr>
<td>(6 * 30 Std./ECTS)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Geschäftsprozessmodellierung</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen des IT-Architekturmanagement</td>
</tr>
<tr>
<td></td>
<td>• Unternehmensführung und Controlling</td>
</tr>
<tr>
<td></td>
<td>• E-Business und unternehmensübergreifende Geschäftsprozesse</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen</td>
</tr>
<tr>
<td></td>
<td>• die Aufgabenbereiche, Rollen und Gremien im IT-Management</td>
</tr>
<tr>
<td></td>
<td>• Methoden zum strategischen Management von IT-Anwendungs-, ERP- und Infrastrukturlandschaften</td>
</tr>
<tr>
<td></td>
<td>• Gängige Vorgehensweisen zum IT-Projekt- und Multi-Projektmanagement in mittelständischen und Großunternehmen</td>
</tr>
<tr>
<td></td>
<td>• Standardisierungen im IT-Management, wie ITIL</td>
</tr>
<tr>
<td></td>
<td>• rechtliche und organisatorische Vorgaben an das IT-Management, insbesondere IT-Governance, Risk und Compliance Management (IT-GRC), sowie deren Konsequenzen für das IT-Management</td>
</tr>
<tr>
<td></td>
<td>Fertigkeiten</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td>• Geschäftsprozesse analysieren und nach unternehmerischen Vorgaben optimieren</td>
</tr>
<tr>
<td></td>
<td>• Projektmanagement-Methoden anwenden und Projekt-Portfolios im Rahmen des Multi-Projektmanagement systematisieren und bewerten</td>
</tr>
</tbody>
</table>
Kompetenzen
Die Studierenden sind in der Lage,

- Anforderungen an Informationssysteme mit professionellen und aktuellen Methoden zu definieren und im Rahmen von IT-Projekten umzusetzen
- den Methodenkatalog für das IT-Management durchgängig anzuwenden
- die Entwicklung von IT-Strategien zu begleiten
- IT-Organisationseinheiten nach Vorgabe zu optimieren, etwa durch Einführung des IT-Service Management oder des Enterprise Architecture Management

Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

Die Studierenden

- sind dazu befähigt, in IT-Organisationen leitende Aufgaben zu übernehmen
- sind in der Lage, an der strategischen Gestaltung von IT-Organisationen mitzuwirkern
- sind in der Lage, IT-Organisationen gezielt zu optimieren
- verfügen über einen breiten Katalog an IT-Methoden, die in IT-Unternehmensberatungen Anwendung finden

Vorlesung & Fallstudie
Das folgende Basiswissen wird in diesem Modul aufgegriffen:

- Beispiele der organisatorische Aufstellung und Verankerung der IT in Unternehmen für die Sicherstellung eines optimalen Business-IT-Alignment
- Inhaltliche und prozessuale Ausrichtung der IT für die optimale Unterstützung des Geschäftsmodells (Eigenbetrieb versus vollständiges/partialles Outsourcing der IT auf Basis unterschiedlicher Dienstleistungsformen)
- Initialisierung und betriebliche Zielsetzung sowie Nutzen eines Enterprise Architecture Managements für die betriebliche IT
- Kennzahlenbasierte Analyse der IT mittels eines unternehmensweit integrierten IT-Controllings

Vertiefend wird auf die folgenden Inhalte eingegangen:

- Methoden der strategischen Unternehmensplanung und deren Zusammenspiel mit und für die Ausrichtung der betrieblichen IT
- Auswirkungen und Transition der IT von einem internen Dienstleistungsbereich in Form der Unterstützung betrieblicher Aufgaben hin zu einem Innovationstreiber für die Digitalisierung der gesamten betrieblichen Wertschöpfungskette im Kontext von Industrie 4.0
- Strategiekonforme, risikobewusste und vorschriftengerechte Ausrichtung der IT als Voraussetzung eines fokussierten IT-Sicherheitsmanagements
- Ethische und kulturelle Fragestellungen im Kontext der länderübergreifenden Aufsetzung betrieblicher IT-Organisationen sowie des Projektmanagements
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen</th>
<th>Vertiefende Fallstudien zu Inhalten des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Seminararbeit benotet</td>
</tr>
<tr>
<td></td>
<td>Vorlesung mit Beamer; Bearbeitung von Fallstudien im Praktikum, Gruppenarbeit und Vorträge im Seminar</td>
</tr>
<tr>
<td>Literatur</td>
<td>Tiemeyer Ernst (Hrsg.): Handbuch IT-Management, Hanser, 2013</td>
</tr>
<tr>
<td></td>
<td>Laudon, Kenneth C./Laudon, Jane P./Schoder, Detlef: Wirtschaftsinformatik: Eine Einführung, Prentice Hall,</td>
</tr>
<tr>
<td></td>
<td>Hofmann Jürgen/Schmidt, Werner (Hrsg.): Masterkurs IT-Management, Vieweg + Teubner Verlag, 2007</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>XXX Open Source Intelligence (OSINT)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>OSINT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung, Seminar, Praktikum</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Holger Morgenstern</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Holger Morgenstern</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch oder Deutsch (Literaturstudium Englisch/Deutsch erforderlich)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 1</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung, Übungen, Seminar: 3 SWS</td>
</tr>
<tr>
<td>Praktikum: 1 SWS</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art Präsent Eigenstudium</td>
</tr>
<tr>
<td>Vorlesung, Übungen, Seminar</td>
<td>45 h 90 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td>15 h 30 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>60 h 120 h</td>
</tr>
<tr>
<td>(6 * 30 Std./ECTS)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene</td>
<td>Grundlagen Betriebssysteme und Netzwerke</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Grundlagen IT Sicherheit</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Programmierung in einer Skriptsprache</td>
</tr>
<tr>
<td>Angestrebte</td>
<td>Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td>Die Studierenden kennen OSINT Methoden und Techniken im Bereich Datensammlung, Analyse und Bewertung</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können OSINT Werkzeuge methodisch anwenden, weiterentwickeln oder selbstständig entwickeln</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen die relevanten OSINT Terminologien und können gewonnene Daten, Informationen und Ermittlungserkenntnisse unterscheiden, bewerten und in den jeweiligen Kontext einordnen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen Grundzüge des relevanten rechtlichen Rahmens und können konkrete OSINT Methoden</td>
</tr>
</tbody>
</table>
und Techniken im legalen, ethischen und moralischen Kontext würdigen

- Die Studierenden kennen den aktuellen Forschungsstand ausgewählter OSINT Forschungsbereiche und können die jeweiligen Forschungsergebnisse einordnen
- Die Studierenden können aktuelle OSINT Forschungsfragestellungen und Thesen wissenschaftlich bearbeiten, Ergebnisse in schriftlicher und mündlicher Form adäquat präsentieren (z.B. als wissenschaftliches Poster, Paper, Talk, Journalartikel)

Inhalt

Vorlesung, Seminar, Praktikum

- Auffrischung relevanter Grundlagen der IT Sicherheit, Digitalen Forensik und Internettechnologien
- Anonymisierung und De-Anonymisierung im Surface-, Deep- und Darknet
- Ermittlungstaktisches-/nachrichtendienstliches Vorgehen
- OSINT Grundlagen, Terminologien, Taxonomien
- OSINT Methoden, Tools, Techniken
- Legaler, moralischer und ethischer Rahmen
- Analyse und Bewertung von OSINT Erkenntnissen
- Praktische Anwendungen
- Wissenschaftliche Recherche, Arbeit und Forschung im OSINT Bereich
- Relevante wissenschaftliche Konferenzen, Journals und Plattformen

Studien-/Prüfungsleistungen/Prüfungsformen

Referat 20 min mit zugehörigen Ausarbeitungen und Diskussion, benotet

Laborarbeit, unbenotet

Medienformen

Vorlesung/Seminar mit Beamer, Tafel, Poster, Paper physisch oder digital (über Lernplattform)

Literatur

Attrill, A.: Cyberpsychology, 2015, Oxford University Press

Ausgewählte Literatur bekannter Top-Tier Konferenzen im OSINT Bereich
Weitere Literatur wird in der Vorlesung vorgestellt.
Semester 1

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>XXX Incident Response und Malware Defence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>IRMA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung, Projekt</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Martin Rieger</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Martin Rieger</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 1</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Projekt: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art Präsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung & Übungen 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Projekt 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 60 h 120 h</td>
</tr>
<tr>
<td></td>
<td>(6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Studierenden besitzen Kenntnisse, Fertigkeiten und Erfahrungen in</td>
</tr>
<tr>
<td></td>
<td>• Betriebssysteme</td>
</tr>
<tr>
<td></td>
<td>• Netzwerke</td>
</tr>
<tr>
<td></td>
<td>• Netzwerksicherheit</td>
</tr>
<tr>
<td></td>
<td>• Programmierung in einer Hochsprache und einer Skriptsprache</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden kennen den aktuellen Forschungsstand zu den Themenbereichen Incident Response und Malware Analyse</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden können den Prozess der Incident Response auf konkrete Aufgabenstellungen anwenden und mit spezifischen Methoden umsetzen.</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden können im Incident Response Prozess Malware identifizieren, isolieren und analysieren</td>
</tr>
</tbody>
</table>

Modulhandbuch 25
Vorlesung und Projekarbeit

1. Der Incident Response Prozess: Preparation, Detection, Analysis, Containment, Recovery, Post Incident Activity
 Veranschaulichung und Vertiefung der Phasen an Beispielen
2. Klassifikation und Taxonomie von Incidents
3. Systemsicherung: Sicherung systemwichtiger Daten
4. Spurensicherung: Netzbasierte Spuren (Netzwerkmitschnitte und Netzwerk-Komponenten), Host-basierte Spuren (persistente und nicht persistente Spuren, Arbeitsspeicher)
5. Spurenanalyse: Netzbasierte Spuren (Netzwerkmitschnitte, Log-Dateien), Host-basierte Spuren (Arbeitsspeicher, Log-Dateien, Dateisysteme)
6. Detektion: Signatur-basierte und Regel-basierte Methoden
7. Methoden zur Einschränkung der Schadwirkung: Sandbox, Zugriffsschutz, Rechteüberwachung, Firewall, Proxy, Netzwerksegmentierung
8. Wiederherstellung: Backup und Systemsicherung anwenden
9. Statische Malware-Analyse: Aufbau der Malware, verwendete Bibliotheken, maliziöse Funktionen und Strukturen
10. Dynamische Malware-Analyse: Wirkungsweise der Malware, Schadwirkung lokalisieren
11. Reporting zur Malware-Analyse: Wirkungsweise, Schadenspotential, potentielle Quellen
12. Reporting zum Incident Response-Prozess
13. Post Incident Aktivitäten: Maßnahmen zur Verbesserung der Sicherheit treffen; Training von Incidents

Beispiele für Projekte

- Aufsetzen einer Signaturbasierten Detektion in einem System. Angriff auf das System. Incident behandeln
- Aufsetzen eines Systems mit Schwachstellen (z. B. offene USB-Anschlüsse oder Mail-Clients ohne Makrovirenschutz); Eintragen einer Malware; Incident Response Prozess ausführen
- Entwicklung einer Malware, die vermutete Systemschwächen ausnutzt (z. B. Keylogger, DLL-Injektor); Erprobung der Malware an einem System mit Malware-Schutz; Incident Respons anwenden

Studien-/Prüfungsleistungen/Prüfungsformen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen</th>
<th>Referat 20 min mit Ausarbeitung, benotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktische Arbeit mit Präsentation 20 min und Handout, benotet</td>
<td></td>
</tr>
</tbody>
</table>

Medienformen

| Medienformen | Folien im PDF-Format; Betrachtung der Implementierung konkreter Anwendungsfälle mit Beamer; Ausarbeitungen und Handouts in Papierform oder als PDF. |

Literatur

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Literatur, insbesondere aktuelle wissenschaftliche Artikel, warden in der Vorlesung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Semester 2
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>52100 Business Process Management and Data Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>52100</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung Business Process Management and Data Compliance</td>
</tr>
<tr>
<td></td>
<td>Fallstudie Business Process Management and Data Compliance</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Nils Herda</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Nils Herda</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch (deutsches und englisches Literaturstudium erforderlich)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 2</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Fallstudie: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>* Veranstaltung / ArtPräsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Fallstudie 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180h 60 h 120 h (6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen:</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Geschäftsprozessmodellierung</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen des IT-Architekturmanagement</td>
</tr>
<tr>
<td></td>
<td>• Unternehmensführung und Controlling</td>
</tr>
<tr>
<td></td>
<td>• E-Business und unternehmensübergreifende Geschäftsprozesse</td>
</tr>
<tr>
<td>Modulziele / Angestrebte</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td>Die Studierenden kennen</td>
</tr>
<tr>
<td>Fertigkeiten</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Geschäftsprozesse analysieren, systematisieren und nach unternehmerischen Vorgaben optimieren</td>
<td></td>
</tr>
<tr>
<td>Methoden für das Geschäftsprozessmanagement anwenden und Risiken in Geschäftsprozessen identifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
<th>Die Studierenden sind in der Lage,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderungen an das Geschäftsprozessmanagement mit professionellen und aktuellen Methoden zu definieren und im Rahmen von IT-Projekten umzusetzen</td>
<td></td>
</tr>
<tr>
<td>den Methodenkatalog für das Geschäftsprozessmanagement durchgängig anzuwenden</td>
<td></td>
</tr>
<tr>
<td>Optimierung von Geschäftsprozessen umzusetzen und zu begleiten (Automation und Teilautomation)</td>
<td></td>
</tr>
</tbody>
</table>

Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

<table>
<thead>
<tr>
<th>Vorlesung & Fallstudie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das folgende Basiswissen wird in diesem Modul aufgegriffen:</td>
</tr>
<tr>
<td>Vermittlung des organisatorischen Kontextes für das Geschäftsprozessmanagement sowie der Regelwerke für eine betriebsvereinbarungskonforme sowie einheitlich-gestaltete Data Governance</td>
</tr>
</tbody>
</table>
- Analyse der Methoden zur Geschäftsprozessvisualisierung, -optimierung sowie -neugestaltung, insbesondere auch im Rahmen betrieblicher Change Management-Projekte
- Anforderungen an Geschäftsprozesse aus Sicht der IT-Governance, Risk and Compliance – verbunden mit den Aspekten rechtlicher sowie ethischer Fragestellungen im Kontext der betrieblichen Erfassung von Mitarbeiteraktivitäten
- Kennzahlenbasierte Geschäftsprozessanalyse für die Performance- und Ergebnissteigerung im operativen und strategischen Geschäftsprozessmanagement
- Verantwortlichkeiten und organisatorische Verankerung der Prozessverantwortlichen, -beteiligten sowie Promotoren in der Etablierung eines Geschäftsprozessmanagements
- Sicherheitsanforderungen und deren betriebliche Umsetzung für ein rechtskonformes Datenmanagement

Vertieft wird auf die folgenden Inhalte eingegangen:
- Bewertung sowie Ursprung der gängigen Geschäftsprozessnotationen (BPMN, EPK, UML, Petri-Netze) im Vergleich
- Bearbeitung und Lösung von Fallbeispielen mittels unterschiedlichen Modellierungsnotationen
- Aspekte der Datensouveränität im Zeitalter der digitalen, betrieblichen Aufgabenbearbeitung

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen</th>
<th>Mündliche Prüfung (20 Min.), benotet Referat, unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Vorlesung mit Beamer; Bearbeitung von Fallstudien im Praktikum, Gruppenarbeit und Vorträge im Seminar</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>51200 Advanced Statistics</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>51200</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen | Vorlesung & Seminar Advanced Statistics
 Übungen Advanced Statistics |
| Studiensemester | 2 |
| Modulverantwortliche(r)| Prof. Dr. Tobias Häberlein |
| Dozent(in) | Prof. Dr. Tobias Häberlein |
| Sprache | Deutsch und English (deutsches und englisches Literaturstudium erforderlich) |
| Zuordnung zum Curriculum | Studiengang: Business and Security Analytics, M.Sc.
 Wahl/Pflicht: Pflichtmodul
 Semester: 2 |
| Lehrform / SWS | Vorlesung & Seminar: 2 SWS
 Übungen: 2 SWS |
| Arbeitsaufwand | Veranstaltung/Art
 Präsenz
 Eigenstudium
 Vorlesung & Seminar 30 h 60 h
 Übungen 30 h 60 h
 Summe: 180 h 60 h 120 h (6 * 30 Std./ECTS) |
| Kreditpunkte (ECTS) | 6 |
| Voraussetzungen nach Prüfungsordnung | Keine |
| Empfohlene Voraussetzungen | Die Studierenden besitzen grundlegende Kenntnisse,
 Fertigkeiten und Erfahrungen in
 • Funktionen, Mengen
 • Wahrscheinlichkeiten
 • Programmieren |
| Modulziele / Angestrebte Lernergebnisse | Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:
 • Die Studierenden können die behandelten statistischen Verfahren selbstständig anwenden.
 • Die Studierenden können Fragestellungen der Datenanalyse mit relevanten statistischen Verfahren in Verbindung setzen. |
<table>
<thead>
<tr>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Studierenden können den Nutzen und die Grenzen der behandelten statistischen Verfahren einschätzen.</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der Stochastik</td>
<td></td>
</tr>
<tr>
<td>o Wahrscheinlichkeiten, Bedingte Wahrscheinlichkeiten, Satz der Totalen Wahrscheinlichkeit, Zentraler Grenzwertsatz</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der Allgemeinen Statistik</td>
<td></td>
</tr>
<tr>
<td>o Verteilungen (Poisson-Verteilung, Binomial-Verteilung, Normalverteilung, Exponential-Verteilung, Beta-Verteilung).</td>
<td></td>
</tr>
<tr>
<td>o Stichproben, Schätzer, Eigenschaften von Schätzern, Schätzmethoden: Kleinstre Quadrate, Momentenmethode, Maximum-Likelihood-Methode,</td>
<td></td>
</tr>
<tr>
<td>• Bootstrapping</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen Bayessche Statistik</td>
<td></td>
</tr>
<tr>
<td>• Lineare Regression</td>
<td></td>
</tr>
<tr>
<td>• Anwendung der besprochenen Verfahren in R mit Beispiel datensätzen und Implementierung verschiedener statistischer Analysen mit R.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Klausur 90 Min., benotet Referat, unbenotet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multimediale Vorlesungspräsentation</td>
<td></td>
</tr>
<tr>
<td>• Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken</td>
<td></td>
</tr>
<tr>
<td>• Vorträge über multimediale Vorlesungspräsentation</td>
<td></td>
</tr>
<tr>
<td>• Nutzung von diversen Applikation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An Introduction to Statistical Learning with Applications in R</td>
<td>ISBN: 978-0-954612085 cran.r-project.org/doc/manuals/R-intro.pdf</td>
</tr>
<tr>
<td>Die "offizielle" R-Einführung</td>
<td></td>
</tr>
<tr>
<td>ISBN: 978-0954612085</td>
<td></td>
</tr>
<tr>
<td>R-Kurs der Uni Augsburg:</td>
<td></td>
</tr>
<tr>
<td>stats.math.uni-augsburg.de/~theus/r-kurs.pdf</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>51300 Distributed Enterprise Applications</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>51300</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung Distributed Enterprise Applications</td>
</tr>
<tr>
<td></td>
<td>Projekt Distributed Enterprise Applications</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. J. Röhrle</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. J. Röhrle</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch, bei Bedarf Englisch (muss vor Semesterbeginn geäußert werden)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 2</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Übungen: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/ArtPräsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Projekt 30 h 60 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h 60 h 120 h</td>
</tr>
<tr>
<td></td>
<td>(6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Studierenden besitzen profunde Kenntnisse, Fertigkeiten und Erfahrungen in</td>
</tr>
<tr>
<td></td>
<td>• Wissenschaftlichem Arbeiten (nachgewiesen durch Bachelor-Abschluss)</td>
</tr>
<tr>
<td></td>
<td>• Objektorientierter Software-Entwicklung auf Basis der Programmiersprache Java in einem vorbereitenden Bachelor-Studiengang</td>
</tr>
<tr>
<td></td>
<td>• Implementierung von Datenbankanwendungen auf Basis des Objektrelationen Mappings</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen</td>
</tr>
<tr>
<td>Fertigkeiten</td>
<td>Kompetenzen</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td>• verteilte Datenbankanwendungen als Transaktionsprogramme zu einer Aufgabenstellung aus dem Bereich der Wirtschaftsinformatik in der Programmiersprache Java zu konzipieren und zu implementieren</td>
<td>• gegebene Aufgabenstellungen aus dem Bereich der Wirtschaftsinformatik analysieren und als eine dem MVC-Paradigma genügenden Anwendung implementieren</td>
</tr>
<tr>
<td>• Entity-Beans und Session-Beans auf der Basis der JPA zu konzipieren und zu implementieren</td>
<td>• J(2)EE-Beans für einen Applikationsserver zu konzipieren und zu implementieren</td>
</tr>
</tbody>
</table>

Fertigkeiten
Die Studierenden sind in der Lage

- sämtliche Paradigmen des objektorientierten Programmierens
- die Analyse komplexer Aufgabenstellungen und deren Umsetzung in der Programmiersprache Java
- das „Model-View-Controller-Paradigma“ (MVC) bei der Implementierung von Java-Anwendungen
- den professionellen Einsatz von Entwicklungswerkzeugen in Zusammenhang mit der Implementierung von Java-Anwendungen
- den Aufbau und die Arbeitsweise von Betriebssystemen und Netzwerken
- den prinzipiellen Aufbau und die Arbeitsweise von relationalen Datenbanksystemen
- die grundlegende Arbeitsweise von OLTP-Systemen
- den Aufbau von Transaktionen im Sinne des ACID-Paradigmas (Atomicity, Consistency, Isolation, Durability)
- das Paradigma des objektrelationalen Datenbankmodells
- die Implementierungstechniken zur Formulierung komplexer Anfragen auf Basis eines (objekt-) relationalen Datenbank-systems in SQL
- die Verwendung von Metadaten beim Aufbau (komplexer) Datenbank-Anfragen
- das Paradigma des Objektrelationen Mappings (ORM) durch die Java Persistence Architecture (JPA)
- Abstraktionstechniken und deren Anwendung bei der Implementierung von persistenten Anwendungsojekten (Entitäten)
- die Formulierung von Datenbankprozeduren und Triggern im Sinne „aktiver Datenbanken“
- die Bedeutung von Integritätsbedingungen als Maß für die Qualität der Daten

Kompetenzen
Die Studierenden können

- gegebene Aufgabenstellungen aus dem Bereich der Wirtschaftsinformatik analysieren und als eine dem MVC-Paradigma genügenden Anwendung implementieren
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• JDBC-Klassen im Sinne des ORM-Paradigmas auf JPA-Klassen abbilden</td>
</tr>
<tr>
<td>• „Entity“- und „Session Beans“ im Sinne der JPA-Architektur konzipieren und implementieren</td>
</tr>
<tr>
<td>• ein konkretes Datenbanksystem und einen konkreten Applikationsserver gemäß einer gestellten Aufgabe aus dem Bereich der Wirtschaftsinformatik professionell einsetzen</td>
</tr>
<tr>
<td>• an der organisatorischen Vorbereitung eines Unternehmens für die applikationsbasierte Software-Entwicklung mitwirken</td>
</tr>
<tr>
<td>• die Komplexität, die Machbarkeit, die Sicherheit und den Innovationsgrad von angestrebten Problemlösungen erkennen und miteinander vergleichen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesung & Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• die Java Persistency API (JPA)</td>
</tr>
<tr>
<td>• Implementierung von Entity- und Session-Beans</td>
</tr>
<tr>
<td>• Implementierung von verteilten Transaktionen auf Basis der JPA</td>
</tr>
<tr>
<td>• Anwendungsentwicklung durch Einsatz eines Java-Applikationsservers</td>
</tr>
<tr>
<td>• Behandlung organisatorischer und konzeptioneller Maßnahmen zur Einführung einer unternehmensweiten Applikations-server-basierten Entwicklung verteilter Anwendungen</td>
</tr>
<tr>
<td>• Konzept und Realisierung von Applikationsserver-basierten Data Grid-Anwendungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündliche Prüfung 20 min., benotet</td>
</tr>
<tr>
<td>Praktische Arbeit, unbenotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit Beamer; Skript in PDF-Format; Implementierung konkreter Anwendungsfälle und Visualisierung mit Beamer; Übungen und Tests in einem Labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle 11g Release 2 für den DBA, Addison Wesley, 2010</td>
</tr>
<tr>
<td>Greenwald, R.; Stackowiak, R.; Stern, J.: Oracle Essentials, O'Reilly, 2007</td>
</tr>
<tr>
<td>Feuerstein, S.: Oracle PL/SQL - Best Practices, O'Reilly, 2007</td>
</tr>
<tr>
<td>Feuerstein, S.; Pribyl, B.: Oracle PL/SQL Programming, O'Reilly, 2007</td>
</tr>
<tr>
<td>Elliot, J., O'Brian, T.M., Fowler, R.: Harnessing Hibernate, O'Reilly, 2008</td>
</tr>
<tr>
<td>Wehr, H., Müller, B.: Java Persistence API mit Hibernate, Addison Wesley, 2007</td>
</tr>
<tr>
<td>Bauer, Chr.; King, G.: Hibernate in Action. Manning Pub., 2004</td>
</tr>
<tr>
<td>http://jbossts.blogspot.de/2014/01/narayana-transaction-analyser-100alpha1.html</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

- Leitungsaufgaben

Kenntnisse:
Die Studierenden kennen
- Methoden zur Integration einen betrieblichen Innovationsmanagements in bestehende Betriebe
- Planungs-, Organisations- und Qualitätsmanagementsmethoden aus Theorie und Praxis
- Methoden und den praktischen Einsatz von betrieblicher Verfahren zur Festlegung von Zielvereinbarungen und Leistungsbewertungen

Fertigkeiten:
Die Studierenden sind in der Lage,
- Zusammenhänge zwischen diversen Theorien und Konzepten zu sehen, diese zu umfassenderen integrierenden praxisorientierten Konzeptionen weiterzuentwickeln und in konkreten entwickelten Anwendungen zum Einsatz zu bringen

Kompetenzen:
Die Studierenden können
- Geschäftsидеen entwickeln, diese bezügliche Realisierbarkeit prüfen und Strategien entwickeln, Forschungsergebnisse zu transferieren und als Innovation umzusetzen
- wissenschaftliche Grundlagen- und neuere Forschungsergebnisse erfassten, auf deren praktischen Einsatz hin prüfen, ergänzen und zum Einsatz bringen
- bisher entwickelten Kompetenzen in einem praxisorientierten Arbeitsumfeld nutzen, umsetzen und auf wissenschaftlichem Niveau nach Bedarf zielorientiert ergänzen und erweitern
- Projekte organisieren, umsetzen, steuern und die Einhaltung nach Gesichtspunkten des Qualitätsmanagements kontrollieren, überwachen
- den Einsatz des Personals planen, entsprechende Absprechen treffen, die Umsetzung kontrollieren/ überwachen und den Einsatz von Zielvereinbarungen und betrieblichen Leistungsbewertungen in leitender Funktion einsetzen
- die Erfahrungen von Personen unterschiedlicher Kompetenzen zielgerichtet zum Erfolg eines in Teamarbeit durchgeführten Projekts einsetzen und nutzen

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
</table>

- Vorlesung:
 - Ideenmanagement
 - Betriebliches Innovationsmanagement
 - Transfer Wissenschaft - Praxis
 - Zielvereinbarungen
Leistungsbewertung

Seminar:
- Akquirierung des neuesten Stands wissenschaftlicher Ergebnisse im Hinblick auf den im Projekt behandelbaren Gegenstände
- Entwicklung einer qualifizierten Geschäftsидеe für die anstehende Projektarbeit
- Sichtung, Bewertung der Transfer-Möglichkeiten und qualitativ geprägte Auswahl des durchzuführenden Projekts

Projekt:
- Entwicklung eines ausführlichen Geschäftsszenarios, eines Qualitätsmanagementplans und einer Risikoabschätzung
- Bestimmung, Suche und Auswahl der einzusetzenden wissenschaftlichen Forschungsergebnisse
- Entwicklung einer Vermarktungsstrategie
- Durchführen der Organisations- und Qualitätsplanung
- Vornahme der Projektplanung (Aufgaben, Netzplan, Meilensteine) und Festlegung der Arbeitsverteilung (Rollen, Verantwortlichkeiten, Mitarbeit, Personalführung)
- Leitung und Durchführung des Projekts
- Betreiben des Projekt- und Risikomanagements
- Durchführung von Produkttest, Endfertigung und Qualitätskontrolle
- Bestimmung der erreichten Wertschöpfung

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen</th>
<th>Praktische Arbeiten, benotet Referat Dauer max. 30 min., unbenotet</th>
</tr>
</thead>
</table>
| Medienformen | Multimediale Vorlesungspräsentation
- Unterlagen über Internetpräsenz, Bibliothek und Fachdatenbanken
- Vorträge über multimediale Vorlesungspräsentationen
- Nutzung von diversen Applikationen
- Projekt unter Nutzung von diversen Medien |

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>XXX Advanced Network and Internet Security (ANIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ANIS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung, Seminar, Projekt</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Tobias Heer</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Tobias Heer</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 2</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Seminar: 1,5 SWS</td>
</tr>
<tr>
<td></td>
<td>Projekt: 1,5 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art Präsenz Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>Vorlesung & Übungen 10 h 30 h</td>
</tr>
<tr>
<td></td>
<td>Seminar 25 h 50 h</td>
</tr>
<tr>
<td></td>
<td>Projekt 25 h 50 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 60 h 120 h</td>
</tr>
<tr>
<td></td>
<td>(6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>nach Keine</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene</td>
<td>Die Studierenden besitzen Kenntnisse, Fertigkeiten und Erfahrungen in</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>• Betriebssysteme</td>
</tr>
<tr>
<td></td>
<td>• Netzwerke</td>
</tr>
<tr>
<td></td>
<td>• Netzwerksicherheit</td>
</tr>
<tr>
<td></td>
<td>• Programmierung in einer Hochsprache und einer Skriptsprache</td>
</tr>
<tr>
<td>Angestrebte</td>
<td>Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:</td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td>• Die Studierenden kennen den aktuellen Forschungsstand ausgewählter Forschungsbereiche in der Netzwerksicherheit</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden können Forschungsfragestellungen der Netzwerksicherheit mit geeigneten Mechanismen und Methoden in Verbindung setzen und diese zur Bearbeitung der Fragestellung anwenden</td>
</tr>
</tbody>
</table>
Die Studierenden können eine Forschungsfragestellung bearbeiten und die erzielten Ergebnisse adäquat präsentieren.

Die Studierenden können im Rahmen einer eigenständigen Arbeit neue Systeme im Bereich Netzwerksicherheit entwickeln und bestehende Systeme bewerten erweitern und analysieren.

Vorlesung, Referat und Projektarbeit

Die Vorlesung gliedert sich in drei Teile auf, die z.T. zeitlich überlappend durchgeführt werden:

Beispiele für die zu behandelnden Themen

- Sicherheit moderner Kommunikationsprotokolle (HTTP/2, QUIC, P2P Protokolle, etc.)
- Aktuelle Angriffe gegen Kommunikationsprotokolle
- Protokolle zur Erreichung spezifischer Sicherheitsziele (Vertraulichkeit, Integrität, Verfügbarkeit, Anonymität, Pseudonymität)
- Authentifikations- und Authorisierungsprotokolle
- Sicherheit im industriellen Umfeld (Fertigung, Steuerung)
- Analyse von Kommunikationsdaten zur Erkennung von Sicherheitsproblemen
- Analyse verschlüsselter Verbindungen zur Klassifikation von Verkehr
- Analyse von Log- Einträgen und anderweitig erfassten Ereignissen zur Erkennung und Klassifikation von Angriffen

Referat

20 min mit Ausarbeitung, benotet

Labor Arbeit

unbenotet

Medienformen

Folien im PDF-Format; Betrachtung der Implementierung konkreter Anwendungsfälle mit Beamer; Referate mit Beamer, Ausarbeitungen und Handouts in Papierform oder als PDF. (Materialien sind in Englisch)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G. Schäfer, M. Roßberg, Netzssicherheit, dpunkt.verlag, 2014</td>
</tr>
<tr>
<td></td>
<td>Ausgewählte Literatur bekannter Top-Tier Konferenzen im Bereich Sicherheit und Netzwerksicherheit z.B. ACM CCS, Usenix Security, Defcon, Blackhat, etc.</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>XXX Security Analytics</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Sec-A</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung, Praktikum</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. German Nemirovski</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Prof. Dr. German Nemirovski</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td>Wahl/Pflicht:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Semester:</td>
<td>2</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td></td>
</tr>
<tr>
<td>Vorlesung:</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Praktikum:</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td></td>
</tr>
<tr>
<td>Veranstaltung/Art</td>
<td>Präsenz</td>
</tr>
<tr>
<td>Vorlesung & Übungen</td>
<td>30 h</td>
</tr>
<tr>
<td>Projekt</td>
<td>30 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>60 h</td>
</tr>
<tr>
<td>(6 * 30 Std./ECTS)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Studierenden besitzen Kenntnisse, Fertigkeiten und Erfahrungen in</td>
</tr>
<tr>
<td></td>
<td>- Betriebssysteme</td>
</tr>
<tr>
<td></td>
<td>- Netzwerke</td>
</tr>
<tr>
<td></td>
<td>- Netzwerksicherheit</td>
</tr>
<tr>
<td></td>
<td>- Statistik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen den aktuellen Forschungsstand zu den Themenbereichen Security Analytics</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden können den Analytischen Prozesse auf konkrete Aufgabenstellungen anwenden und mit spezifischen Methoden und Tools umsetzen.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden können im Rahmen einer eigenständigen Arbeit neue Ansätze für einen Security Analytics Prozess mit konkreter Aufgabenstellung entwickeln.</td>
</tr>
</tbody>
</table>
Vorlesung und Praktikum

17. Definition und Begriffsklärung
18. Security Analytics Use Cases
19. Data Souesess und Methoden der Datensammlung
20. Real time Datensammeln
21. Anwendung der Security Analytics Ergebnissen und ihr Impact
22. Basic security analytics Costs
23. Advanced persistent threats
24. Security Analytics und Digitale Forensics
25. Übersicht der security analytics tools and services, u.a.:
 - Blue Coat Security Analytics Platform,
 - Lancape Stealth Watch System
 - Juniper Networks JSA Series Secure Analytics
 - EMC RSA Security Analytics NetWitness
 - FireEye Threat Analytics Platform
 - Arbor Networks Security Analytics
 - Click Security Click Commander
 - Hexis Cyber Solutions' NeatBeat MON
 - Sumo Logics' cloud service.
 - Security Onion

Studien-/Prüfungsleistungen/Prüfungsformen

- Klausur 90 Min, benotet
- Praktische Arbeit mit Präsentation 20 min und Handout, benotet

Medienformen

- Folien im PDF-Format; Betrachtung der Implementierung konkreter Anwendungsfälle mit Beamer; Ausarbeitungen und Handouts in Papierform oder als PDF.

Literatur

- •
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>XXX Financial Risks & Financial Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Philipp Lindenmayer</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Philipp Lindenmayer</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics. MSc. Wahl/Pflicht: Wahlpflichtmodul Semester: 2</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Übungen/Fallstudien: 2 SWS</td>
</tr>
<tr>
<td>Arbeistaufwand</td>
<td></td>
</tr>
<tr>
<td>Veranstaltung/Art</td>
<td></td>
</tr>
<tr>
<td>Präsentation/Eigenstudium</td>
<td>Vorlesung: 30h 60h</td>
</tr>
<tr>
<td></td>
<td>Übungen/Fallstudien: 30h 60h</td>
</tr>
<tr>
<td>Summe: 180h</td>
<td>60h 120h (6 * 30 Std./ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen der Wirtschaftsinformatik und BWL</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Investition und Finanzierung</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Statistik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• sind mit zentralen Aspekten des Kapitalstrukturmanagements und der Ableitung der relevanten Kapitalkosten vertraut</td>
</tr>
<tr>
<td></td>
<td>• kennen die Portfoliotheorie und das CAPM und deren Anwendungsgebiete im Risikomanagement und der Kapitalkostenableitung</td>
</tr>
<tr>
<td></td>
<td>• lernen die zentrale Masse der Performancemessung kennen</td>
</tr>
<tr>
<td></td>
<td>• kennen die wesentlichen Verfahren der Unternehmens- sowie der Anleihebewertung</td>
</tr>
</tbody>
</table>
Fertigkeiten

Die Studierenden

- können selbständig und marktgestützt Kapitalkosten von Unternehmen ableiten
- können die Performance von Finanzanlage mittels gängiger Verfahren/Masse (Sharpe Ratio, Jensen Alpha, etc.) beurteilen
- können die gängige Verfahren zur Unternehmensbewertung anwenden und selbständig Unternehmenswerte ableiten
- können Anleihen bewerten
- können die unterschiedlichen finanzwirtschaftlichen Risiken identifizieren und voneinander abgrenzen
- können gängige Verfahren zum Management finanzwirtschaftlicher Risiken (Value at Risk, Hedging mittels Derivaten, etc.) anwenden
- können die gängigen Formen von Derivaten voneinander abgrenzen und deren Funktionsweise wiedergeben

Kompetenzen

Das Modul trägt zum Erreichen der folgenden Lernergebnisse (Kompetenzen) bei:

Die Studierenden

- sind in der Lage, die für deren Problembereich relevanten Datenquellen zu identifizieren, die Daten formal zu beschreiben und diese für analytische Zwecke aufzubereiten. Sie sind darüber hinaus in der Lage, analytische Untersuchungen der Daten unter der Zielsetzung der Beantwortung komplexer Fragestellungen und des Generierens neuer, nicht trivialer Wissens selbstständig durchzuführen.
- Die Studierenden verfügen über Verständnis zur Analyse der für die Geschäftsabläufe relevanten Informationen, verstehen daraus Wissensstrukturen zu formen und auf der Grundlage des resultierenden Wissens die Strategien für einen qualifizierten Entscheidungsfindungsprozess abzuleiten.
- Die Studierenden verfügen nicht nur über die Kenntnis von Methoden und Verfahren unterschiedlicher Fachgebiete der Informatik, sondern sind auch in der Lage, diese im jeweiligen Anwendungskontext anzuwenden.

Vorlesung & Übungen & Fallstudien

- Kapitalstruktur, Verschuldungspolitik und Kapitalkosten
- Portfoliomanagement, CAPM
- Performancemessung
- Aktien- bzw. Unternehmensbewertung
- Anleihebewertung
- Analyse finanzwirtschaftlicher Risiken
- Risikomanagement (Marktpreisrisiken, Zinsänderungsrisiken, Kreditausfallrisiken)

Inhalt
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referat 25 Min., benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit Beamer, Tafel, Skript physisch sowie digital (über Lernplattform), Übungen, Fallstudien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
Semester 3
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulhandbuch 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Modulhandbuch 51</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>60100</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Projekt Master-Thesis</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. German Nemirovski</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>abhängig von Thema und Inhalt der Master-Thesis</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch (deutsches und englisches Literaturstudium erforderlich)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Studiengang: Business and Security Analytics, M.Sc.</td>
</tr>
<tr>
<td></td>
<td>Wahl/Pflicht: Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Semester: 3</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Projekt, betreute selbständige wissenschaftliche Arbeit</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Veranstaltung/Art: Projekt</td>
</tr>
<tr>
<td></td>
<td>Präsenz & Selbststudium</td>
</tr>
<tr>
<td></td>
<td>750h (25 ECTS * 30 h/ECTS)</td>
</tr>
<tr>
<td>Kreditpunkte (ECTS)</td>
<td>25</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Lerninhalte der Module des Masterstudienganges Business and Security Analytics</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Mit der Master-Thesis zeigt der Student, dass er unter Anleitung selbständig umfangreiche wissenschaftliche Themen bearbeiten kann. Er wird praxisorientierte oder theoretische Themenstellungen nach wissenschaftlichen Kriterien analysieren, strukturieren und ergebnisorientiert bearbeiten. Die Master-Thesis dokumentiert seine Arbeit und erfüllt die Kriterien eines wissenschaftlichen Berichts. Dabei haben die Studierenden die Möglichkeit alle für den Studiengang Business and Security Analytics gesetzten Qualifikationsziele zu vertiefen, darunter:</td>
</tr>
<tr>
<td></td>
<td>- Strategisches Denken</td>
</tr>
<tr>
<td></td>
<td>- Konzeptionelle Fähigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Vernetztes Denken</td>
</tr>
<tr>
<td></td>
<td>- Führungskompetenz</td>
</tr>
<tr>
<td></td>
<td>- Forschungskompetenz</td>
</tr>
<tr>
<td></td>
<td>- Prozesskompetenz</td>
</tr>
<tr>
<td></td>
<td>insbesondere jedoch</td>
</tr>
<tr>
<td></td>
<td>- Methodenkompetenz und wissenschaftliche Erweiterung und Vertiefung</td>
</tr>
<tr>
<td>Inhalt</td>
<td>abhängig von Thema und Inhalt der Master-Thesis</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Prüfungsformen</td>
<td>Master-Thesis (Ma), benotet</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Medienformen</td>
<td>abhängig von Thema und Inhalt der Master-Thesis</td>
</tr>
<tr>
<td>Literatur</td>
<td>abhängig von Thema und Inhalt der Master-Thesis</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>60200 Mündliche Masterprüfung</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>60200</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>60210 Mastervortrag</td>
</tr>
<tr>
<td></td>
<td>60220 Masterprüfung</td>
</tr>
</tbody>
</table>

Studiensemester
3

Modulverantwortliche(r)
Prof. Dr. German Nemirovski

Dozent(in)
Ist abhängig vom Thema und Inhalt der Master - Thesis

Sprache
Deutsch (deutsches und englisches Literaturstudium erforderlich)

Zuordnung zum Curriculum

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Business and Security Analytics, M.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahl/Pflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrform / SWS
Projekt, betreute selbständige wissenschaftliche Arbeit

Arbeitsaufwand

<table>
<thead>
<tr>
<th>Veranstaltung/Aufgaben + Selbststudium</th>
<th>Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 h (5 ECTS * 30 Std./ECTS)</td>
</tr>
</tbody>
</table>

Kreditpunkte (ECTS)
5

Voraussetzungen nach Prüfungsordnung
Keine

Empfohlene Voraussetzungen
Lerninhalte der Module des Masterstudienganges Business and Security Analytics

Modulziele / Angestrebte Lernergebnisse

Die nach dem Mastervortrag folgende Masterprüfung zielt darauf ab, die im Masterstudium erlangten Lernergebnisse zu überprüfen.

Im Besonderen Masse führt die Vorbereitung und die Durchführung des Mastervortrages und der Masterprüfung zur Vertiefung von folgenden Qualifikationsziele:

- Strategisches Denken
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Ist abhängig vom Thema und Inhalt der Master - Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Referat 30 Min. benotet, Mündliche Prüfung 30 Min. benotet</td>
</tr>
<tr>
<td>Prüfungsformen</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>Ist abhängig vom Thema und Inhalt der Master - Thesis</td>
</tr>
<tr>
<td>Literatur</td>
<td>Anleitung zur wissenschaftlichen Arbeit. Vom Kandidaten selber vorzuschlagende vertiefende Literatur.</td>
</tr>
</tbody>
</table>
Zuordnung der Module zu Fächergruppen (Säulen)

| Informatik |
|---|---|---|---|---|---|
| Nr. | Modul | Semester | Art | SWS | ECTS |
| 51300 | Distributed Enterprise Applications | 1 | WP | 4 | 6 | M20 |
| 52200 | Data- and Webmining | 1 | PM | 4 | 6 | K90 |
| 52300 | Large-Scale Data Analysis and Parallelization | 1 | PM | 4 | 6 | K90 |
| 52400 | Semantic Web | 1 | WP | 4 | 6 | K90 |
| 60100 | Master-Thesis | 3 | PM | 0 | 25 | Ma |
| 60200 | Mündliche Masterprüfung | 3 | PM | 0 | 5 | R30,M30 |

| Wirtschaftsinformatik |
|---|---|---|---|---|---|
| Nr. | Modul | Semester | Art | SWS | ECTS |
| 51100 | Business Intelligence | 1 | PM | 4 | 6 | K90 |
| xxxxx | Financial Risks & Financial Management | 2 | WP | 4 | 6 | R25 |
| 52100 | Business Process Management and Data Compliance | 2 | PM | 4 | 6 | M20 |
| 52500 | Strategic IT Management | 1 | PM | 4 | 6 | Sa |
| 60100 | Master-Thesis | 3 | PM | 0 | 25 | Ma |
| 60200 | Mündliche Masterprüfung | 3 | PM | 0 | 5 | R30,M30 |

| Fächervergrendende Qualifikationen |
|---|---|---|---|---|---|
| Nr. | Modul | Semester | Art | SWS | ECTS |
| 51200 | Advanced Statistics | 2 | PM | 4 | 6 | K90 |
| 51500 | Innovation and Transfer Competence | 1 | WP | 4 | 6 | Pr |
| 60100 | Master-Thesis | 3 | PM | 0 | 25 | Ma |
| 60200 | Mündliche Masterprüfung | 3 | PM | 0 | 5 | R30,M30 |

Modulhandbuch 55
<table>
<thead>
<tr>
<th>Nr.*</th>
<th>Modul</th>
<th>Semester</th>
<th>Art</th>
<th>SWS</th>
<th>ECTS</th>
<th>benotet</th>
<th>unbenotet</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx</td>
<td>Open Source Intelligence</td>
<td>1</td>
<td>WP</td>
<td>4</td>
<td>6</td>
<td>R20</td>
<td>La</td>
</tr>
<tr>
<td>xxxx</td>
<td>Incident Response and Malware Defence</td>
<td>1</td>
<td>WP</td>
<td>4</td>
<td>6</td>
<td>R20+Pr</td>
<td></td>
</tr>
<tr>
<td>xxxx</td>
<td>Advanced Network and Internet Security</td>
<td>2</td>
<td>WP</td>
<td>4</td>
<td>6</td>
<td>R20</td>
<td>La</td>
</tr>
<tr>
<td>xxxx</td>
<td>Security Analytics</td>
<td>2</td>
<td>PM</td>
<td>4</td>
<td>6</td>
<td>K90</td>
<td>Pr</td>
</tr>
<tr>
<td>60100</td>
<td>Master-Thesis</td>
<td>3</td>
<td>PM</td>
<td>0</td>
<td>25</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>60200</td>
<td>Mündliche Masterprüfung</td>
<td>3</td>
<td>PM</td>
<td>0</td>
<td>5</td>
<td>R30,M30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summen</td>
<td></td>
<td></td>
<td>16</td>
<td>54</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Die Summen beziehen sich auf das Gesamtangebot der Module. In Abhängigkeit der individuellen Wahlrichtung ändern sich die zu erbringenden Prüfungsleistungen; die ECTS belaufen sich auf 90, die SWS auf 40 (siehe hierzu die Studien- und Prüfungsordnung des Studiengangs).
Hochschule Albstadt-Sigmaringen
Business and Security Analytics
Jakobstraße 6
72458 Albstadt
Germany

+49 7571 732 9345 • win@hs-albsig.de