Data Science Hochschulzertifikat

Data Mining

Programm
Data Science

Abschluss
Einzelzertifikat

Modulnummer
10300

Themenbereich
Data Analytics, Grundlagenstudium

Leistungpunkte
5

Sprache
deutsch/englisch

Dozent
Prof. Dr. Christian Bizer

Gebühren
1005 €

Dauer
6 Wochen

Präsenzveranstaltungen
Mannheim (ggf. Online)

Onlineanteil
85%-100%

Modulbeginn

1. Termin: 31.01.2022 - 13.03.2022
2. Termin: 30.01.2023 - 12.03.2023

Modulinhalte

The course provides an introduction to advanced data analysis techniques as a basis for analyzing business data and providing input for decision support systems. The course covers the following topics:

  • Introduction to Data Mining: The course starts with a general overview of the most important types of data mining techniques as well as an overview of the major application areas of these techniques. We will discuss the main tasks within data mining projects, being data gathering and exploration, data pre-processing and transformation, pattern discovery, and evaluation/interpretation.
  • Data Exploration: Before applying any data mining techniques, it is important to gain an initial understanding of the data to be mined. This includes calculating summarization statistics, visualizing the data, but also identifying data quality problems such as outliers or missing values. We will discuss dataset summarization and visualization techniques and will apply them to different data sets.
  • Cluster Analysis: The goal of cluster analysis is, given a set of objects, to find groups of objects such that the objects in a group will be similar to one another and different from the objects in other groups. Application areas of cluster analysis are for example customer segmentation, market research, e-commerce, and image processing. We will discuss different partitional and hierarchical clustering techniques and apply these techniques to find groups of similar objects in different data sets.
  • Classification: The goal of classification is to learn a function from training data which is able to assign previously unseen records to certain predefined classes (groups) as accurately as possible. Classification techniques are widely applied in different settings, including credit risk assessment, marketing, and fraud detection amongst others. We will cover several widely used classification techniques, including Decision Trees, k-NN, Rule Learning, Naïve Bayes, Artificial Neural Networks, and Support Vector Machines. We will also discuss how to evaluate and optimize the learned models.
  • Association Analysis: Co-occurrence relationships between items are important with various application domains, such as marketing, supermarket shelf management, inventory management, and web usage analysis. We will cover different techniques for identifying co-occurrence patterns in data and will learn how to select the subset of relevant patterns from the usually very large pattern sets discovered by the algorithms.
  • Text Mining: The term text miningrefers to the extraction of implicit, previously unknown and potentially useful information from a large amount of textual resources. Example applications of text mining include topical classification of news stories or web pages, email and news filtering, spam detection, sentiment analysis, and search term auto-completion. We will learn how to apply all the techniques that we have covered in the other sections not only to structured data but also to text and will experiment with different text clustering and classification tasks.

Lernergebnisse, Kompetenzen

Wissen

Students will acquire fundamental knowledge of the techniques, opportunities and applications of data mining. Successful participants will be able to identify opportunities for applying data mining in an enterprise environment, select and apply appropriate techniques, and interpret the results.

Fertigkeiten

Students learn to apply data mining techniques in business scenarios using state of the art data mining tools.

Sozialkompetenz

Students learn to work as a team in order to solve a data mining project (case study).

Selbstständigkeit

Die Studierenden erarbeiten sich den Inhalt selbständig anhand von Studienbriefen. In einer Projektarbeit während des Präsenzwochenendes lernen die Studierenden in kleineren Teams selbständig zu arbeiten.

Teilnahmevoraussetzung

Keine.

Prüfungsform

Klausur (60 Minuten) + Projektarbeit

Anmeldung zu den berufsbegleitenden Zertifikatsprogrammen

Melden Sie sich jetzt zu einem Einzel- oder Gesamtzertifikat unserer Zertifikatsprogramme an. Damit wir sicherstellen können, dass Sie Ihre Zugangsdaten auch rechtzeitig erhalten, muss die Anmeldung spätestens zwei Wochen vor Beginn des (ersten) Moduls erfolgen.
Hinweis: Die Teilnehmerzahl ist im Interesse der Teilnehmer begrenzt, so dass wir eine frühzeitige, verbindliche Anmeldung empfehlen.

Sollten Sie noch Fragen haben, können Sie gerne jederzeit Kontakt mit uns aufnehmen.

Jetzt anmelden

Jetzt anmelden